
Interchange of Electronic Design Through VHDL and EIS

Richard M. Wallace
Computer Scientist

Air Force
Wright-Aeronautical Laboratories
Electronic Technology Division
Wright-Patterson, A F B , Ohio

Abst tact

The need for both robust and unambiguous
electronic designs is a direct require-
ment of the astonishing growth in design
and manufacturing capability during re-
cent years [1,2], In order to manage the
plethora of designs, and have the design
data both interchangeable and inter-
operable, the Very High Speed Integrated
Circuits (VHSIC) program is developing
two major standards for the electronic
design community. The VHSIC Hardware
Description Language (VHDL) is designed
to be the lingua franca for transmission
of design data between designers and
their environments. The Engineering
Information System (EIS) is designed to
ease the integration of data between di-
verse design automation systems. This
paper describes the rational for the
necessity of these two standards and how
they provide a synergistic expressive
capability across the macrocosm of de-
sign environments.

The Rational

The VHSIC Program has propelled forward
the design density of electronic systems
to a point where current computer aided
design tools, design representations,
and the corresponding data management
systems begin to limit the designers’
ability to design throughout the con-
tinuum of system levels to physical
levels. In order to provide mechanisms
for designers in the next decade, the
VHSIC program has several design automa-
tion efforts under-way in its Technical
Insertion and System Level Design tool
subprograms. The dual focus of these
subprograms is use of VHDL as the nota-
tion for design/description and the EIS
for integration of design data. Initia-
tion of the the VHDL proqram was moti-
vated by the diversity of design nota-
tions that failed to encompass the broad
range of descriptive capability required

for advanced system documentation, and
by the need of the DoD to provide a
standard descriptive notation for s y s -
tems that have life-spans upward of fif-
teen years. The VHSIC Hardware Descri-
ption Language provides an economical
method to decrease the system design
time and cost of government re-procured
ICs. Design costs for ICs are now in
the range of $ 2 to $5 million and devel-
opment costs must be reduced to meet fu-
ture needs. Maintaining and upgrading
electronic systems in inventory demands
specific, current, and rigorous descrip-
tions. As English can be vague, and
fraught with idiomatic contextual refer-
ences, the automation of design and de-
sign verification demands a technology
independent, rigorous notation as is
VHDL.

The EIS is envisioned to provide effic-
iency for the design process and to ease
the insertion of VHSIC technology into
electronic defense systems. To this end
the development of an integrated design,
documentation, and life-cycle mainten-
ance system for complex electronic sys-
tems must support initial specification
design data capture to fabrication and
testing data in one continuum. An EIS
system is not, and would not, be avail-
able from the commercial sector due to
the high cost of development for a
“turn-key“ system being beyond most bus-
inesses. Therefore design automation
tool users are forced to integrate an
assortment of design tools from other
vendors and those that are developed
internally. The unique, proprietary,
and internal design representations of
each vendors’ design automation tool
complicates the integration task dras-
tically. Integration has been a sever
problem [3 , 4] while integration is known
to be beneficial [5,6]; thus the EIS has
as its main goal the reduction of the
present difficulties involved with in-
tgration of different vendors’ design
tools by developing a set of inter-oper-

119

ability standards and then demonstrating
them. The VHDL in total is to be used
in the EIS system as the design documen-
tation formalism required of complex
electronic systems.

VHDL - - The Lingua Franca

A standard hardware description language
benefits all industries that depend on
electronics. By its use the problem of
a second source can be greatly reduced.
But how is this accomplished? What
makes the VHDL such a beneficial nota-
tion for electronic design? From the
inception of a standard hardware desc-
ription language [7] the focus of the
language was to allow a hierarchical
continuum of design notation from the
system to gate level. A discussion of
the language hierarchy must begin at its
basic building block, the design entity;
and then progress through its other fea-
tures to show the capability of the lan-
guage for electronic design and the the
transfer of that design from designer to
designer.

The design entity is the principal
hardware abstraction in V H D L . A design
entity provides the separation of
interface and function to allow a
hierarchical design decomposition. The
crux of the design entity is the
interface which allows the entity to be
combined with other components. The
interface is the abstraction's "pin-out"
that describes the data paths and other
factors that need to be known by
component users. The secondary part to
a design entity is its body which
describes the organization and/or
operation of a component. As an
abstraction, the entity interface may
possess mu1 t iple bodies, each
representing a different implementation
o r emphasizing a different view of
design. A design entity models
electronics of any intricacy. Examples
would be a logic gate, a flip-flop, a
control unit, or a computer system. In
fact, the range is only limited by the
imagination of the designer as design
entities can be used to describe any
physical object having a bounded
identity .
The design entity interface contains in-
formation that is common to the bodies
that use the entity interface. This in-
formation includes data that is visible
and is not visible externally. Of the
visible data there are two types ports
and generics. The non-visible informa-
tion may define types, constants, and
attributes that are used by the alter-
nate bodies of the entity. Inclusive of

the object information, the interface
can contain assertions that specify
operating properties and operational
circumstances of the entity. Operating
properties specify desired timing or fu-
nctional relationships demonstrated by
the entity. Operating circumstances
specify external conditions that must be
stated in order for the entity to cor-
rectly model its component.

To define communication channels among
design entities and the outside world,
the port data describes the mode and
type of that information. To pass data
that is not part of an entity's port
interface, but is important to the oper-
ating circumstances, the design entity
interface may have generics. For examp-
le, a generic value would be passed to
the entity to specify a particular tech-
nology that the design entity is repre-
senting. Generics may represent instan-
tiations of preconditions for execution.

Given the interface of a design entity,
the designer provides a body that will
describe the function of the entity. In
V H D L there are two major divisions of
entity bodies; the architectural body
that expresses the data transformations
that occur within the entity and the
configuration body that controls the
choice of design entities that are used
to model sub-components and the distri-
bution of signal definitions.

In an architectural body the description
styles that designers use roughly fall
into three categories: structural, data-
-flow, and behavioral. As is implied,
structural description is approximately
equivalent to the schematic connection
of electronic components. The data-flow
description method consists of register
transfer level data transforms. The be-
havioral method of description allows
the designer to specify transforms in
wholly algorithmic terms. Any given
architectural body may use these three
general forms of description inter-
changeably.

With the capability of developing a li-
brary of similar component designs, it
is desirable to make use of existing en-
tities even if names o r ports are not
exactly what are required, but a subset
interface will suffice. Additionally, a
design series can have multiple config-
urations, each using slightly different
design entities to implement the given
component's behavior. The configuration
body, which contains the configuraton
specification, provides the ability to
respecify the default association rules
so that an architectural body's compo-

120

nents may be bound to corresponding but
not identical design entities. The
architectural bodies must preceed the
configuration bodies which use them. In
this way a confisuration body can add or
modify the enity configuration post-de-
sign without altering its basic archi-
tecture.

With the basic structural elements of
the VHDL identified, the data of such a
block structured language must follow in
rigor, and scope. The VHDL is a strong-
ly typed language based on the syntax
and semantics of Ada. With this being
known, the VHDL supports descriptions of
objects from the typical bit values of
'0' and '1' to higher levels of abstrac-
tion such as "integer, 'I "message pack-
et," and "instruction." With the range
of data that can be described, VHDL
avoids the pit-fall of predefining data
types available to the designer. This
gives the designer the ability to com-
pletely describe new data types as they
are needed. The set of types available
to the designer include predefined types
such as BIT, BOOLEAN, REAL, INTEGER,
CHARACTER, and TIME. Additionally all
scalar and composite types are allowed.
These types would include enumeration
types, physical types (allowing expres-
sion of measurement defined in a base
unit), records, and multidimensional
arrays. VHDL has the ability to create
functions and procedures and place these
in packages to enable the designer to
encapsulate algorithmic behavior.

The two most salient features of VHDL
for future application to artificial
intelligence are the ability to create
and attach attributes to objects and
have liturgical assertions that have
global scope for a design entity. As
new technologies emerge for design and
construction of electronic circuits,
VHDL provides an attribute mechanism
that allows designers to associate extra
information with descriptions of
components or parts of components. A s
attributes can be referenced in VHDL
this allows entities and data-objects to
have LISP-like atom properties. This
capability is useful in intelligent
silicon compilation [8,9,10]. In order
to produce designs that are both eff-
icient, and more importantly correct,
the VHDL has the assertion ability req-
uired in many verification systems [Ill.
Assertion statements check static or
dynamic conditions that are either
checked prior to simulation or during
simulation as signal values change.
Assertions may occur at any point in a
VHDL description and are user control-
lable in order to report the condition
of the entity.

EIS - - The Pax Romana
In 1984 the disparity due to the diver-
sity of design formats and languages
prompted outcries from industry where
the future was seen as,

"A nightmare of incompatible
formats and a babel of diff-
erent languages."[121

The rhetorical question would be, "Has
it gotten any better since 1984?" From
the surveys of design systems available
in the trade press, the answer is no;
elthough efforts by IC designers and
fabricators have produced draft inter-
zhange formats (e.g. EDIF). In order to
couple the large amount of distributed
database designs many individual trans-
lators have been written. Such one-on-
one translation does not provide the in-
tegration necessary for automated design
and fabrication. without data integra-
tion, no amount of automation will over-
come the data interchange problem.

A series of workshops were held to form
a base-line for what would constitute
the requirements for an EIS. More than
150 people representing near as many
organizations attended the workshops.
The result was the creation of the
Requirements f o r Engineering Informat-
ion Systems [13]. Five key areas for an
EIS were identified by the participants.
An EIS must support:

- the reuse of design information
from all forms of input,

an information repository and
data caputre designed for a multi-
base, heterogeneous environment,

an interface to its information
model such that it economically
supports integration of existing CAE
software, - a system that is not monolithic
in use so that installations may
tailor the system for current and
future needs, and - the efficiency to support the
above functionality in its opera-
tion.

The architecture of the EIS is rooted in
its information model; which when used,
provides a Pax Romana (enforced peace)
on the conflict of data representation
and data usage. This Information Model
is the focus of the EIS effort that will
allow the identified key area to be
achieved. The requirements are that,

"The EIS must provide a model
of the classes of engineering
information that are needed to
accurately describe the sem-

121

antics of the information in
the engineering environment in
which the EIS operates. The
EIS Engineering Information
Model (EIM) need not be used to
actually represent engineering
data; this is the purpose of
the common exchange format.
Rather, it must provide a def-
inition of all information
classes and modeling rules
needed as the basis for formu-
lating a conceptual framework
for information exhange."[l4]

It is this semantic description of engi-
neering information that provides the
knowledge-based technology that disting-
uishes the EIS effort from other data-
dictionary based, multi-view databases.
It is the goal of the EIM to have the
specification o f semantics in a precise
and understandable form. The informa-
tion classes and prescribed modeling
rules will ensure that the allowable
combinations of the data can be modeled
in exactly one way; the are no redundant
EIM models of the same data within the
s y s tem.

A goal of the EIS is to develop an
accepted Common Exchange Format (CEF) in
order to promote the exchange of data
between design systems, repositories and
organizations. From the experience
gained in the development of the VHDL,
the important factor in data exchange is
the information model. Once the model
is developed, the development of the ex-
change format is one of representation
notation design. The Object-Oriented
Data Language will be used in the EIS
for defining the syntax for manipulating
objects maintaiced within an EIS. The
PROBE Data Model, an object-oriented ex-
tension of DAPLEZC, developed by Computer
Corporation of America. DAPLEX is a
semantic data model and query language
that will provide the necessary features
for an object-oriented information mod-
el; such as

the concept of an entity or ob-
ject that has existence independent
of its properties or relationships, - support for relationships between
objects and for set-valued proper-
ties, and - types and generalization hier-
archies with inheritance.

For access to repositories through the
EIS the Object-Oriented Data Language
will be used as the CEF between EIS
installations. In addition, data ex-
change adapters will be used to trans-
port design data via VHDL and EDIF. A l -

ternate exchange formats, such a s a sub-
stantial portion of SQL will be used f o r
non-EIS installations as the program de-
velops thus allowing an interface to
foreign information models.

The Object Manager of the EIS is the
r e s po n s i b 1 e " age n t " f o r ma na g i n g ob j e c t s
and functions. It registers new ob-
jects, deletes objects that are unneed-
ed, locates and retrieves objects, and
provides access to objects. The Object
Manager provides services for resolving
object references in bindings with
application to 1) persistent and
temporary objects (data and events), 2)
stored and derived objects (database and
computed), and 3) passive and active ob-
jects (data and processes). Implementa-
tion of the Object Manager is based on
the design and facilities of the ENCORE
system by Brown University.

With the EIS Information Model key-stone
set within the EIS, the representation
of data is best controlled through
rule-processing and control-point
activation of data management functions.
The Short-term requirements for
rule-based processing of EIM data are
that,

"Rule processing must be sup-
ported by programs that imple-
ment all required management
and control and other rule-
based capabilities. There must
be an interface specification
f o r every situation in which
rule processing is necessary
that allows proqrams to invoke
appropriate rule processing
programs and pass parameters to
them. Rule processing may be
implemented via object programs
in the short term.. . . " "The
EIS must be able to invoke the
rule processing services in a
heterogeneous, distributed en-
vironment. The services must
fulfill tool availability req-
uirements.. . " [151

In the extended short-term requirements,
the general rule-based system which
allowed object programs to have static
knowledge-bases is modified S O that,

"A 1 1 c apa b i 1 i t i e s
required by the EIS must be
provided by a rule processor,
which can be invoked through
programs that use the speci-
fied" [note: CAIS] "standard
interfaces. The rule processor
must support the execution of
rules specified by a rule spec-

r u 1 e - ba sed

122

ification language. The EIS
must support facilities for
adding, deleting, and modifying
rules. The rule specification
language must support the con-
cept of system supplied variab-
les.. . " "and must support eval-
uation of expressions, condi-
tion testing and the triggering
of actions. The rule speci-
fication language must allow
for the specification of ac-
tions, including sending mess-
ages, changing global and ob-
ject-related management and
control information, and invok-
ing programs. The rule speci-
fication language must support
the concept of variables and
parameters. The rule specifi-
cation language must permit use
of any type of object as a var-
iable o r parameter and must al-
low for the specification of
parameterized queries contain-
ing update operations against
EIS-managed data. The EIS, in
combination with the rule pro-
cessor, must be able to support
the concept of parameterized
messages and programs, and must
be able to supply the parameter
instantiations automatically."
[1 6 1

Thus the EIS Information Model is based
on processing information using a multi-
rule knowledge base in a multi-base en-
vironment. From this foundation the ex-
change of information among diverse en-
vironments is no longer a matter of for-
mat, but is one of semantics.

Summary

This paper has covered the descriptive
capability and control mechanisms of
the VHDL and the Information Model
structure of the EIS. It is the purpose
of both of these standards efforts to
promote the interchange of electronic
design data through the semantic content
of the data rather than in its physical-
/logical format. It is the intent that
both of these "tools," a language and an
environment,will be platforms from which
knowledge based electronics design may
continue forward. Internal to the VHDL
there exist the necessary control struc-
tures and proof mechanisms for the lan-
guage to be the input to a formal proof
of correctness system as done by Dr.
Luckham at Stanford University. As has
been described above, the EIS Informa-
tion Model is to be based on known know-
ledge-base requirements and techniques.

References.

1. Cammarata, Stephanie and Melkanoff,
M., "An Interactive Data Dictionary Fac-
ility for CAD/CAM Data Bases," Expert
Database Systems, Benjamin/Cummings Pub-
lishing Co., Menlo Park, CA, 1986, pp.
423 -440.

2. King, Roger, "A Database Management
System Based on an Object-Oriented
Model," Ibid pp. 443-468.

3. Katz, Randal, "Managing the Chip
Design Database," IEEE Computer
Magazine, Vo1.16, No.12, December 1983.

4. Kalay, Y., "A Database Management
Approach to CAD/CAM Systems Integra-
tion," Proceedings 22nd ACM/IEEE Design
Automation Conference, June 1985.

5. Brown, H., C. Tong, Foyster, G.,
"Palladio: An Exploratory Environment
for Circuit Design," IEEE Computer
Magazine, Vo1.16, No.12, December 1983.

6. Elias, N., Byrne, R., et.al., "The
ITT VLSI Design System: CAD Integration
in a Multinational Environment," Pro-
ceedings 22nd ACM/IEEE Design Automation
~- Conference, June 1985.

7. Preston, G., "Report of IDA Summer
Study on Hardware Description Language,"
HQ 81-23681, Institute for Defense Anal-
yses Science and Technology Division,
Arlington, VA, October, 1981.

8. Johannsen, D., McElvain, K.,
Tsubota, K., "Intelligent Compilation,"
VLSI Systems Design, April 1987.

9. Janac, George, Carlos, G., Davis,
R., "A Knowledge-Based GaAs Design
System," VLSI Systems Design, April
1987.

10. Goering, Richard, "Intelligent
Silicon Compiler Optimizes ASIC Design,"
Computer Design, April, 15, 1987.

11. Kemmerer, Richard, "Verification
Assessment Study Final Report, 'I
C3-CR01-86, Office of Research and
Development National Computer Security
Center, March 27, 1986.

12. Patton, C. "Languages and Data
Formats Vie As Potential Standards in
the CAE Design Loop," Electronic Design,
Vo1.32, No.26, December 27, 1984.

123

13. Linn, Joseph, Winner, R. editors,
"The Department of Defense Requirements
for Engineering Information Systems,"
P-1953, Institute for Defense Analyses,
Alexandria, VA, July, 1986.

14. Ibid paragraph 3.24.

15. Ibid paragraph 3.10.

16. Ibid paragraph 4.10.

124

